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Calculated Thermal Expansion of the 
Actinide Elements 1 

P. Siiderlind, 2 B. Johansson, 2 L. Yongming,  2 and L. NordstriJm 2 

The linear thermal expansion coefficient is calculated for the early actinides 
thorium, protactinium, uranium, neptunium, and plutonium for a hypothetical 
fcc crystal structure. The relativistic spin-orbit interaction is included in these 
calculations. We show that the spin-orbit splitting of the 5f band gives rise to 
a considerable increase in the thermal expansion and, to a large extent, explains 
the anomalously large thermal expansion for these elements. 
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1. I N T R O D U C T I O N  

Recently the linear coefficient of thermal expansion was calculated for the 
fcc and bcc 4d transit ion elements and some other  metals [1 ]. The good  
agreement  with experimental data  encouraged us to treat the thermal 
expansion of  the actinide elements in a similar way. This is of part icular 
interest since the early actinides U, Np, and Pu  show a behavior  which is 

highly anomalous  when compared  to other elements in the Periodic Table. 
In this work we identify to what  extent their behavior  originates from the 
relativistic effects, especially the spin-orbit  coupling for 5f electrons. 

In order  to calculate the thermal expansion we have used the 
Helmhol tz  free energy, which is expressed as a sum of total energies for the 
electrons and the phonons.  The electronic part  is obtained from 
self-consistent electronic structure calculations within the local density 
approximat ion  (LDA).  The equat ion of state is calculated by means of 
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the Linear Muffin Tin Orbital (LMTO) [-24] method. The lattice con- 
tribution is derived from a quasi-harmonic treatment using Debye and 
Griineisen theory. The Helmholtz free energy is least-square fitted to a 
Morse function. This analytical representation is used to find the minimum 
of the free energy with respect to volume for a given temperature. The tem- 
perature-dependent equilibrium volume leads directly to the linear thermal 
expansion coefficient. 

2. THEORY AND CALCULATIONS 

We are especially interested in calculating the temperature-dependent 
Wigner-Seitz equilibrium radius, ro(T ). From this quantity we directly 
obtain the linear coefficient of thermal expansion. In order to calculate 
ro(T) we minimize the Helmholtz free energy for a given temperature. The 
total free energy contains contributions from electrons and phonons. It is 
physically well justified to neglect the electron-phonon coupling 15] and 
the entropy contribution from the electrons. Neglecting the temperature 
dependence of the electronic structure, the free energy F(r, T) takes the 
form 

F(r, T) = Er ) + Eph(r, T) -- TSph(r, T) (1) 

where r is the Wigner Seitz radius, Eel and Eph are the electronic and 
phonon energies, respectively, and Sph is the phonon entropy. The electron 
energy, obtained by means of electronic structure calculations, is fitted by 
a Morse function with three parameters, b, c, and 2, i.e., 

Eel(r ) = be zr + ce 2)~r + constant (2) 

The phonon energy contains the thermal energy, U, derived from Debye 
theory [6] and the zero-point energy [7] Eo, 

( T ~  3 0/T X 3 9kBO 
Eph= U + E o = 9 k B T \ o /  ~ e ~ - - - - d x + - -  (3) 

~o - 1  8 

where O denotes the Debye temperature. 
Inserting the corresponding expression for the phonon entropy [7], 

the free energy takes the form 

t F(r, T )=EoI(r ) -kBT 3 ~ e x d X - 3  ln[1 - e  -~  (4) 
~0 - -1  

The Debye temperature, O, is calculated as a function of temperature and 
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the Griineisen theory is applied. Following the work in Ref. 1 we calculate 
the Debye temperature at the equilibrium radius (ro) from the relation 

Oo - O(ro) = 41.63 (5) 

where B is the bulk modulus and M the atomic mass. The anharmonic 
behavior of the lattice vibrations is treated by means of Gri.inesien theory. 
We define the Griineisen parameter in the Debye model as [6]  

81nO 
Y - 8 in V (6) 

Considering the Gri.ineisen parameter as a constant, we obtain O V ~ = 
constant, which gives us the volume dependence of the Debye temperature. 
Equation (5) for the Debye temperature is used to derive the Griineisen 
parameter, 

1 1 c~lnB 
(7) 

7=  6 2c~ln V 

From the definition of the bulk modulus this can be expressed as 

2 V82P/OV ~ 
~ -  3 2 8 P / 8 ~  (8) 

The equation of state is obtained from the Morse function, which is fitted 
to the Helmholtz energy. This leads to a rather complicated expression of 
the Griineisen parameter as a function of volume. At the equilibrium radius 
ro(T), the Griineisen parameter will be simplified to a linear function of r o. 
We label ), in the same way as the Debye temperature, 

7o=7(ro) 2ro 2 (9) 

Here the Morse parameter 2 is used to define a constant Grfineisen 
parameter for a given temperature. This approximation of the lattice 
behavior with a mixture of Debye and Griineisen theory and a constant ), 
for a given temperature is of a so-called quasi-harmonic type. The volume- 
and temperature-dependent Debye temperature can, after this derivation, 
be calculated from the expression 

O(r, ro) = Oo (10) 
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Fig. 1. Comparison between experimental and theoretical 
values for the linear coefficient of thermal expansion. 

The total free energy as well as the equilibrium radius can now easily be 
calculated. Having obtained ro(T) the linear coefficient of thermal expan- 
sion is simply computed as 

1 dro(T ) 
~(T) (11) 

ro(T ) dT 

3. RESULTS 

The thermal expansion, calculated with the spin-orbit coupling 
included, is in satisfactory agreement with experimental data [8] for the 
three first actinides. (The experimental value for protactinium is, however, 
an estimation.) The agreement is not so good for neptunium as regards the 
absolute value but the calculations account quite well for the experimen- 
tally observed anomalous rise between uranium and neptunium. The 
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calculated thermal expansion for plutonium is found to be very high but 
still considerably smaller than the experimental. A comparison between 
experiment and theory is shown in Fig. 1. 

4, C O N C L U S I O N S  

Analysis of the calculations shows that it is the splitting of the 5f band 
due to the spin-orbit coupling which gives rise to the anomalous increase 
in the thermal expansion for the heavier elements [9].  The remaining dis- 
crepancy with the experimental for neptunium and, especially, plutonium is 
most likely due to our simplified treatment of the crystal structure. We 
have assumed a fcc crystal structure for all the elements in the electronic 
structure calculations. This is appropriate for thorium but the other 
elements have far more complicated structures. This means, in particular, 
that their thermal expansion is anisotropic. The experimental data are 
average values, while the calculations, for cubic symmetry, give only a 
single coefficient of thermal expansion. At room temperature, plutonium 
has a monoclinic structure [10] with 16 atoms in each unit cell and this 
highly asymmetric configuration is most likely the origin of the remaining 
discrepancy between theory and experiment for plutonium. 
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